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Application of Remote Sensing 
and Machine Learning for Crop 
Production Forecasting During 
Crises

Covid-19 Bulletin
FINDING A SOLUTION 

TO THE PROBLEM 
OF FOOD CROP 

PRODUCTION DATA

Introduction and Context

The impact of these policies has put 
a heavy strain on diff erent sectors of 
the economy and communities’ live-
lihoods. One of the biggest fears is 
that COVID-19 and the public health 
measures taken also impact agricul-
tural food production, leading to a 
potential food crisis in many parts of 
the world, especially in Africa. 

While on the health side, offi  cial 
data shows that Africa is currently 
less aff ected by the COVID-19 
pandemic compared to the rest of 
the world, there have been many 
impacts on African economies, 
which are largely dominated by the 
informal sector and as such, greatly 
dependent on the mobility of its 
populace. In the Agricultural sector, 
some undesired consequences on 
food crop production are inputs 
scarcity, the shortage of agricultural 
workers, access to export markets 

From eff ects on access to seeds and fertilizers, 
limited movement of goods, declining demand, 
to labor shortage, the disruptive impact of 
Covid-19 on food production systems is real. 
The challenge here is not only the likely extent 
and complexity of the disruptions but also 
the diffi  culty to identify and track them in real 
time. Unlike the propagation of the disease 
itself which can be tracked through testing and 
tracing, it is impossible, even in normal times, 
to have accurate information on cropping 
activities. The introduction of confi nement and 
other measures to control the pandemic make 
the situation even more diffi  cult. There is no 
way of knowing whether farmers have access 
to inputs, in time or in adequate quantities, 
whether they have been too sick to tend to their 
farmers or could work only partially. One would 
eventually fi nd out at the end of the growing 
season from the impact of harvested quantities. 
One is then left to play catch up to deal with a 
crisis situation. 

The complete lack of information about growing 
conditions can be overcome by using today’s 
digital technologies. Remotely sensed data allow 
to track in real time changes in vegetation cover, 
weather data and other parameters related to 
cropping activities. Recent developments in 
machine learning and computer modeling make 
it possible to track and predict crop production 
using these data. The benefi ts go far beyond 
the ability to overcome the obstacles to data 
gathering during crises. The many weaknesses 
hampering the access to good quality 
agricultural statistics also can be overcome using 
the same digital technologies, from measuring 
arable land, planted areas, crop yields to the 
spatial distribution of harvested quantities. 
Our scientists are using these technologies to 
assess changes in food production systems 
during the pandemic and thereby provide 
valuable information to tackle the impact of the 
pandemic among local communities.   

     

To mitigate the spread and impact of COVID-19, countries around the 
world have been taking policy action such as social distancing and mobility 
restrictions, as well as the closure of schools, businesses and national borders, 
among other measures.
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and food supply availability issues, 
including from imports.  Good 
planning - from governments, 
policy and other decision makers - 
is crucial to anticipate and mitigate 
the potentially negative eff ects on 
the agricultural sector in order to 
prevent a food crisis. Being able 
to assess early how much food is 
expected to be produced provides 
not only a better overview of food 
security but also allows for more 
precise and disaggregated national 
food balance sheets.  

African countries regularly issue 
production forecasts, generally 
at a national level, with limited 
disaggregation. The methodology 
used routinely relies on data samples 
collected at traditionally designated 
agricultural regions. The samples 
are then used for regression analysis 
to estimate production for other 
areas and/or at a national level. 
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Aside from involving costly and time-consuming data collection surveys, such 
techniques are known to lead to biased outcomes by not considering new 
agricultural lands or regions. Lastly, the same methods of forecasting food 
crop production currently fail to take into account more frequently occurring 
climate related shocks such as drought, fl oods, heat waves and pest invasions. 

The multiple restrictions to control the pandemic add another layer of 
complications, as they make it diffi  cult, at least when using traditional 
methods, to access the necessary data to evaluate the growing season 
early enough to be prepared for eventual negative outcomes. Moreover, 
the complex web of disruptions resulting from the pandemic renders the 
application of traditional forecasting techniques, which are not suitable for 
sudden shocks, impractical. Our team of scientists at AKADEMIYA2063 has 
developed a model to go around these various obstacles. The model uses 
remote sensing data and machine learning techniques to generate maps of 
predicted production, at fairly disaggregated geographic level, as an output. 
Thanks to recent developments in remote sensing, satellite images are able to 
observe features on earth in diff erent wavelengths and with good temporal 
and spatial resolutions. They can revisit the same region of interest several 
times in a month and can cover a large region - even an entire country - which 
enhances our land monitoring capacities including agricultural ones. On the 
other hand, machine learning techniques recently gained attention due to 
the capacity to learning patterns within datasets without being explicitly 
programmed. We are applying the model to forecast the production of most 
food staple crops across Africa as the Covid-19 pandemic evolves in order 
to allow countries to anticipate and better target interventions to protect 
vulnerable groups and communities. 

Solving data access problems through remote sensing and third-party maps

Production estimation based on remote sensing data can be done with two 
main approaches: (i) Using remotely sensed data as inputs to agro-meteo-
rological or plant-physiological models, and (ii) Building a direct mathemati-
cal relationship between remotely sensed data and crop production (Huang 
& Han, 2014). The fi rst approach is based on “mechanistic” descriptions of 
crop growth, development and production simulated through mathematical 
functions. Such methods have shown good results but are not able to exploit 
datasets to their full extent due to the constraints coming along the way crop 
growth phenomenon are described. The second approach usually relies on 
derived indicators from remotely sensed data and their correlation with crop 
growth and yield. 

One of the most known and used parameters to characterize vegetation 
covers and thus track crop growth is the Normalized Diff erence Vegetation 
Index (NDVI) which is derived from near infrared and red bands of satellites’ 

multispectral (MS) sensors. The 
NDVI is extensively used due to 
its close relationship with several 
vegetation parameters such as 
Leaf Area Index (LAI), fraction 
of Absorbed Photosynthetically 
Active Radiation (fAPAR) and green 
biomass. The rationale behind NDVI 
is that crops’ leaves absorb red 
spectrum of visible light as energy 
source for photosynthesis processes 
and refl ect the infrared spectrum. 
Therefore, normalized refl ectance 
diff erence between red and infrared 
spectrum can assess how healthy a 
vegetation cover is with the amount 
of absorbed red and refl ected 
near infrared lights. Many studies 
have predicted crop yield based on 
NDVI signals (Rembold et al., 2013), 
Millet yield assessment in Burkina 
Faso (Rasmussen, 1992) and Millet 
production forecast in Senegal 
(Rasmussen, 1997). 

Relying only on NDVI as a proxy 
for crop yield estimation means 
that other signals are not exploited 
for the purpose of food crop 
production forecasts.  Our approach 
emphasizes the use of several 
remote sensing products and third-
party maps for the same purpose 
of production forecasting. Several 
studies conducted during the 1970’s 
have shown that fi nal crop yield 
can be related to thermal indices 
(Leroux et al., 2018). We include a 
daytime Land Surface Temperature 
(LST) layer as input in the model, in 
addition to rainfall data retrieved 
from Climate Hazards group 
InfraRed Precipitation with Station 
data (CHIRPS) remote sensing 
products. Finally, the model uses 
harvested areas and production 
maps from the MapSpam database1, 
which also includes physical areas, 
yield, and production value maps for 
more than 40 crops at global scale.

We apply the model to predict 
millet production in Senegal for 
the 2020 season. The three sets 
of maps present the main inputs 
used. The fi rst set (Figures 1) 
shows the mean values of NDVI, 
LST and rainfall during the 2017 

1 https://www.mapspam.info/
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Figure 1. Example of maps of mean NDVI, LST and 
rainfall during 2017 Millet growing season in Senegal
(upper left): Normalized Difference Vegetation Index 
(NDVI), (upper right): Daytime Land Surface 
Temperature, (lower left): Rainfall data. Data source: cf. 
Table 1. Map source: Authors.



Millet growing season. The second set shows harvested millet areas in 2005, 
2010 and 2017 (Figure 2). Each pixel contains a value that represents the 
sum of Millet harvested areas of agricultural lands underneath. The fi nal set 
(Figure 3) presents the distribution of millet production for the same years. 
Each map presents pixel values of Millet production for the corresponding 
year. Harvested areas and production maps have the same pixel locations but 
with diff erent values and can be used as crop masks to extract explanatory 
variables at the exact same location where we know with a good probability 
that Millet has been grown. The model takes NDVI, LST, rainfall and harvested 
areas as inputs to predict production values. The data used and their sources 
and main technical characteristics are described in Table 1.

Model features Data source / RS product
Temporal 

res.
Spatial 

res.
Type

Normalized Diff erence 
Vegetation Index

MODIS1  (MOD13A2.006) 16 days 1 km Input

Daytime Land Surface 
Temperature

MODIS (MOD11A2.006) 8 days 1 km Input

Rainfall CHIRPS Monthly 0.05° Input

Harvested Areas MapSpam Annual 10 km Input

Production MapSpam Annual 10 km Output

Machine learning and predictive modeling for forecasting under shocks

Machine Learning is a sub-domain of Artifi cial Intelligence whose recent adop-
tion in several research fi elds is a consequence of improvements in computa-
tions capacities, algorithms and the number of available datasets. Machine 
learning techniques are designed to mine datasets with the goal of extracting 
as much information as possible to “teach” the computer programs to recog-
nize and mimic its patterns without being explicitly programmed. 
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Teaching a computer to learn 
patterns within datasets involves 
three main ‘learning’ techniques 
that are widely used: supervised, 
unsupervised and reinforcement 
learning. The type of technique to 
be used depends on the type of 
available data and problem. When 
explanatory and response variables 
are available to build a predictive 
model, supervised learning will 
be used to build the relationship 
between inputs and outputs. When 
only explanatory variables are 
available, no relationship can be built. 
Instead, a structural pattern can be 
found by grouping dataset features 
into clusters. Such procedure uses 
unsupervised learning to investigate 
intrinsic similarities between data 
points with the mean of measuring 
how far they are from each other. 
Reinforcement learning is a sort 
of combination between the two 
aforementioned techniques in a way 
that the response variable values 
are generated along a process of 
trial and error.  The model generates 
successive rounds of predictions 
and regularly updates its parameters 
to improve its performance in 
terms of producing the desired 
responses. For our current purpose, 
we have used a supervised learning 
algorithm to predict production 
as a response variable using NDVI, 
daytime LST, rainfall and harvested 
area as explanatory variables.

Data pre-processing

The overarching goal of the data 
pre-processing procedure is to build 
the fi nal dataset which will be used 
to train the algorithm to learn the 
relationship between features such 
as NDVI, daytime LST, Rainfall and 
harvested areas, with the targeted 
crop production values. The data 
used are 2005, 2010 and 2017, years 
for which crop masks are available 
on the MapSpam portal. The entire 
set of data-processing steps de-
scribed below was completed with 
Spyder-python 3.7.0 provided in the 
open-source individual Anaconda 
distribution.

Figure 2. Maps of harvested areas for Millet in Senegal. 
(upper left): 2005, (upper right): 2010, (lower left): 2017. 
Data source: MapSpam. Maps source: Authors.

Figure 3. Maps of production quantities for Millet in 
Senegal. (upper left): 2005, (upper right): 2010, (lower 
left): 2017. Data source: MapSpam. Maps source: 
Authors.

Table 1. List of our model’s features with their source or remote sensing product ID,   
 temporal and spatial resolutions



Mosaicking process

The first step of the data pre-processing stage is the mosaicking process which 
entails merging together different tiles of the same sensing date to cover a 
specific region of interest. Such a process is specific to satellite images that 
are sensed with a specific order due to satellite trajectory around the earth. 
MODIS global sinusoidal tile grid is composed of 595 tiles with 460 that are 
non-filled. For a region like Senegal, one tile is sufficient to cover the whole 
country, therefore no mosaicking process is needed. 

Raster extraction and cleaning process

The objective of this step is to extract only needed Scientific DataSets (SDS) 
layers from satellite images and to take out unreliable pixels. For NDVI, lay-
ers 1 and 12 have been used to extract NDVI rasters and keep pixels that are 
labelled as good or marginal data. The same process applies to daytime LST, 
while rainfall and harvested areas are ready-to-use rasters.

Reprojection, pixel resampling and cropping 

At this stage, the methodology consists of performing 3 main operations: re-
projection, pixel resampling and cropping. MODIS products that have been 
selected for the production model are sinusoidal-projected. For further oper-
ations with country administrative borders, both shapefiles and rasters need 
to have the same projection system and Geospatial Data Abstraction Library 
(GDAL) package has been used to transform each raster projection system 
from sinusoidal to World Geodetic System 1984 (WGS84) which is the one 
used for the Global Positioning System (GPS). 

In addition, pixel size has to be the same between rasters and crop masks 
for future operations. MapSpam pixel size has been used as reference to re-
sample input rasters pixels with GDAL resampling procedure. Finally, level 0 
shapefile (national level) has been applied to isolate the area of interest.

Crop mask application

Production and harvested areas maps retrieved from MapSpam portal are 
rasters with the same pixel number location and size. The main difference 
is in the value they contain. To further isolate explanatory variables at areas 
where a specific crop is grown, a crop mask has been built using one of the 
aforementioned one. Such operation consists of replacing no data pixels’ val-
ue with 0, and not null pixels’ value with unity. Therefore, by performing the 
arithmetic product of such a mask with all the maps that have been generat-
ed, the result would be new NDVI, daytime LST and rainfall rasters at pixels 
where the selected crop is located. However, for the 2020 dataset we used 
the 2017 mask which is the latest available and harvested areas maps do not 
need to go through such operations since they already have the desired pixel 
locations.

Generate mean rasters for each feature

To build an agricultural production estimator in a supervised learning manner, 
explanatory and their corresponding response variables are mandatory. In 
our case, each line (equivalent to a specific pixel) of the final dataset on which 
the model will be built on, is a scenario. Therefore, the temporal resolution be-
tween inputs and outputs must match. However, production values are avail-
able on an annual basis which means pixel values for explanatory variables 
need to be annualized, and for that mean values were computed for each 
feature during the growing season. For one crop, the final outputs would be 
15 mean (or annual) rasters that are cropped to the region of interest and 
correspond to 3 rasters (2005, 2010 and 2017) x 5 variables (4 explanatory and 
1 response). 
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From raster to data frame

The final step for the data pre-pro-
cessing procedure has been to 
transform generated rasters from 
the previous section to a data frame 
that will be used for modeling pur-
poses.

Predicting inputs variables

When building the production esti-
mator, only the mean values of in-
puts during the growing season for 
the selected crop are taken into ac-
count. Such a procedure is explained 
first by the need to match the re-
sponse variable temporal resolution 
which is annual; and second to only 
encounter NDVI values that are rele-
vant for crop growth. However, in-
puts’ mean values are not available 
at the onset of the growing season 
for the current year (2020) for which 
we would like to make predictions. 
Hence, we predicted the various 
inputs  by using a Random Forest 
(RF) regressor built on top of each 
inputs’ historical data for the last 20 
years. Figure 4.a. shows an example 
of predicted versus actual data on 
the test set that has been isolated 
for accuracy assessment for NDVI 
and, Figure 4.b. shows predicted 
mean NDVI value for 2020. The 
choice of random forest regressor is 
based on its ability to retrieve confi-
dence intervals of forecasts through 
bootstrap processes which will help 
in creating bounds and assessing ac-
curacy. Forecasted outputs are then 
used as inputs for the production 
model.

Predictive model architecture

For our model we built an Artificial 
Neural Network (ANN) which is 
a supervised learning technique. 
ANNs are inspired by the common 
representation of human brain 
neuronal connections. It is a network 
of unit elements called neurons 
or perceptrons that perform each 
specific task. A network consists of 
an input layer that hosts all input 
data, an output layer that renders 
the result, and one or more hidden 
layers that process the information. 
Each layer consists of one or more 



neurons and each neuron processes the information that comes to it through 
a function called activation function. Each neuron communicates with all the 
neurons of the previous layer and with those of the neurons of the next layer 
if it exists. The connections are made possible by weights that are assigned 
to each bound and updated during the learning phase. Each neuron layer is 
supplemented with a so-called biased neuron, which purpose is to simplify 
the algorithmic writing. For our production model we used a four-layer 
neural network: An input layer with 4 neurons that correspond to the 4 input 
parameters - Two hidden layers with 50 neurons each - An output layer with 1 
neuron to forecast one-pixel production value. 

The learning process is encountered with a backpropagation algorithm that 
proceeds by initializing weights with a random and uniform sampling. Then a 
feed-forward pass is performed to produce a fi rst output that will be compared 
with the actual outputs. A loss function is computed, and a backward pass is 
initiated to generate loss gradients with respect to each weight. Therefore, 
weights are updated using a gradient descent rule and the process is repeated 
until the exit criteria is reached.

For our production model, we used the mean squared error loss function during 
the training process along with the Adaptive Moment Estimation (ADAM) opti-
mizer (Kingma & Ba, 2014). For accuracy assessment, we evaluate the model on 
a test set that corresponds to 10% of the global dataset. A root mean squared 
error of 0.080 has been obtained for our current example of Senegal and Millet.

4. Production forecasting map: Example of Millet in Senegal

The Covid-19 pandemic makes ground-truth data gathering - to assess food crop 
production - a diffi  cult task given the restrictions and potential health risks. In 
addition, the way countries have been generating food production forecasts can 
lead to biased outcomes due its limitations in disaggregation levels and in their 

ability to encounter new agricultural 
lands. Our approach helps to 
overcome the aforementioned 
barriers by harnessing remotely 
sensed data and third-party maps as 
well as machine learning techniques.

In periods of crisis such as 
Covid-19 which ensconced several 
uncertainties about its impacts 
across sectors in particular 
the agricultural one, assessing 
where production basins are 
is a valuable asset. Countries 
have long been generating such 
information at a national level, 
but for “location-sensitive” crisis 
such as Covid-19, disaggregation 
is a key element in mitigating its 
eff ects on communities. Therefore, 
producing such a map of food crop 
production has the potential to 
make Covid-19 agriculture-oriented 
policy responses more community-
oriented. Its value is even more 
perceptible when production is 
predicted prior to crop harvesting 
periods.

Input data for the current year 
(2020) have been produced using 
the RF model. They correspond to 
estimated mean NDVI, daytime LST 
and rainfall data during the growing 
season for Millet in Senegal. Such 
values have been fed to the model 
to forecast Millet production along 
with 2017 harvested area data. Their 
pixel IDs have been used as dummy 
variables in order to reassemble the 
predicted values into a new raster.

The map illustrated on Figure 5 is 
our model’s output and represents 
the Republic of Senegal with 
pixels of Millet production for the 
current season. Each pixel embeds 
a predicted production value that 
corresponds to the amount of 
Millet that is expected to be grown 
underneath.

Conclusion

The model we presented here 
uses remote sensing products 
and machine learning techniques 
to predict food production for a 
specifi c crop and country. While 
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Figure 4a. Predicted and Observed mean NDVI values on test set for Senegal and Millet2.

Figure 4b. Historical and predicted mean NDVI values for Senegal and Millet3.



food crop production has long been estimated at national or administrative 
borders’ level, the main advantage provided with the aforementioned model 
is its ability to forecast production at pixel level. Such open new possibilities 
in food security assessment, food balance sheet and in designing targeted 
policies, specifi cally during the ongoing COVID-19 pandemic.

An example of Senegal and for Millet were taken to succinctly illustrate the 
methodology. In the coming weeks and months, more countries will be covered 
across the continent and the staple food crop production forecasts will be made 
available in future bulletins and newsletters under this particular workstream.
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Figure 5. National Millet production (Senegal) forecasted with our model for the current 
2020 season. Production units are in metric tons, and pixels are of size 10km x 10km.

Figures notes
 1 Moderate Resolution Imaging Spectroradiometer (MODIS)

 2 White pixels correspond to areas where Millet is not grown or nodata values that have been removed from 
remote sensing products.

 3 Green areas correspond to 95% empirical confi dence intervals.


